DBD 等离子体反应器放电功率测量的研究

刘钟阳 吴 彦 王宁会 (大连理工大学 静电与特种电源研究所 大连 116024)

摘要 在明确DBD 放电反应器工作原理的基础上, 讨论放电功率的几种测量方法的优缺点, 其中包括功率表法、瞬时功率曲线法和电压/电荷利萨如图形法, 介绍了基于 PC 的放电功率在线测量系统的组成, 测量结果表明可以快速准确地实现放电功率的在线 测量。

关键词 放电功率 介质阻挡放电(DBD) 等离子体反应器 测量

Researches on Measurement of Discharge Power in DBD Plasma Reactor

Liu Zhongyang Wu Yan Wang Ninghui (Institute of Electrostatics and Special- Power, Dalian University of Technology, Dalian 116024)

Abstract On the basis of operating principle in DBD (D ielectric- Barrier D ischarge) plasm a reactor, the methods are discussed to measure the discharge power in the reactor, which including W attmeter, Instantaneous power and Voltage/Charge trace diagram. Furthermore, the automatic measure system is introduced in this paper. The testing results show ed that the discharge power can be obtained on line quickly and correctly. **Key words** D ischarge power DBD (D ielectric- Barrier D ischarge) Plasm a- reactor M easurement

1 引 言

介质阻挡放电(DBD)等离子体反应器被广泛地应 用于许多生产和研究领域,放电功率的大小,对于工作 状态,运行效果有着重要影响,在进行机理,工艺研究 以及实施过程自动控制时,准确,快速地测量放电功 率,是需要解决的关键问题之一,但存在很大困难:在 发生气体放电时电压和电流的相位失调难以确定,使 得功率的计算和测量比较复杂。本文即在明确DBD 放 电反应器工作原理的基础上,对几种测量方法的优缺 点进行对比,并介绍了在线测量系统的组成和实际测 量结果。

2 DBD 等离子体反应器的工作原理

尽管DBD 等离子体反应器的种类很多,但是放电的机理和过程是基本相同的。两电极之间有绝缘介质, 给电极施加一定频率和电压的交流电,当达到气体的 击穿场强时,工作气体会放电。通过放电间隙的电流是 由大量叫做微放电的纳秒级快脉冲电流细丝组成, 这 些微放电在时间和空间上无规则地分布在整个放电空 间, 在微放电中平均电子能量较高(1—10eV), 而离子 能量不高, 即非平衡态的低温等离子体。在这样的等离 子体氛围下, 再配加其他一些工艺条件, 如选择合适的 工作气体、气压以及电气参数等, 即可达到化学合成 分解等不同的工作目的。

3 反应器的放电功率测量方法的讨论

忽略介质损耗,放电反应器的放电功率近似等于 有功功率。测量的途径可以有:功率表法、定义法(由瞬 时功率曲线得到)、电压/电荷利萨如图形法。

3.1 功率表法

这种测量方法是在交流高压电源的低压侧放置功 率表进行测量,功率表读取的数值包括电源所消耗的 功率,放电反应器的放电功率应为功率表的读数减去 电源(含变压器)的功耗,该法简便易行,实践中应用的 比较广泛,但是对反应器放电功率测量的准确性较低, 引起测量偏差的主要原因有:放电反应器工作时引起 的高压电源(变压器)初级的波形畸变和变压器的功耗 在不同的工作状态(电压、电流)下呈明显的非线性;在 实际测量时一般把空载时电源的损耗看作和放电反应 器工作时的情况是一致的。

3.2 瞬时功率法

利用电压探头、电流探头直接取得等离子体反应 器工作时的电压、电流波形(信号),利用数字示波器求 得瞬时功率曲线,根据功率曲线,求得放电功率。该方 法测量原理清晰易懂,测量的准确度依赖于探头的参 数和示波器的性能,最大问题是在测量的反应器放电 功率较小时,即放电电流小,信号较弱(一般在mV 级),电磁噪声的干扰较大,会严重影响测量的精度。

2 3 电压—电荷利萨如图形法

该方法的测量原理为: 在放电反应器的接地侧串 进测量电容 C_M , C_M 两极的的电压为 V_M , 若放电输送 的电荷为 Q, 则流过回路的电流为 I= dQ/dt = d($C_M V_M$)/ $dt = C_M dV_M/dt$, 所以放电功率 P 为:

 $P = \frac{1}{T} \int_{0}^{T} V \, Idt = \frac{C_{M}}{T} \int_{0}^{T} \frac{dV_{m}}{dt} dt = fC_{M} V \, dV_{M}$

如果把V^M和由高压探头测得的电压V分别加到 示波器的 X—Y, 可以得到一条闭合曲线, 由于 V^M 正 比于电荷Q, 所以通常称作电压—电荷利萨如图形, 闭 合曲线内所围的面积 A 同一个周期放电所消耗的能 量成正比, 这样可得到放电功率(P= fA)。该法在实际 运用时, 要注意测量电容 C^M的选取, 要以不影响放电 反应器工作和方便测量 C^M的电压为原则。但是, 该法 需要人工求取面积, 测量费时, 增加了测量误差。

4 基于 PC 的放电功率在线测量系统

通过以上讨论,可以看出各种测量方法都存在明显的优缺点,其中电压/电荷利萨如图形法从测量原理 上是比较合适用来准确测量反应器在各种工作状态下的放电功率,但费时、费力,不能及时准确获得反应器 工作时的放电功率。针对这些情况,研究开发基于 PC 的放电功率在线监测系统。

4.1 硬件部分

图 1 放电功率在线测量系统结构示意图

4.2 软件部分

基于 PC 的功率在线测量系统的软件部分主要要 完成的功能是: 计算电压、电荷(取样电容两端的电压) 轨迹所围成的面积, 具体如下: 得到一个周期内反应器 的能耗W, 乘以供电波形的频率, 得到反应器工作时 的放电功率 P 输出。图形面积的计算, 采用辛普生公 式近似计算。

5 结果和讨论

在典型的DBD 等离子体反应器——无声放电型 管状臭氧发生器工作时,进行实际测量,如图 2~4 所 示。试验用的放电管有效电极长度 lm,外接地电极直 径 50mm,电极间气隙为 2 5mm,玻璃介质厚度为 1.5mm。图 2 为利用脉冲高压探头(日本 WATSU

图 2 电压、电流和瞬时功率曲线

图 3 电压/电荷利萨如图形(V versus Q)

图 4 放电功率测量 Po 和 PM 比较

EL ECTR IC 的 HV - P60)、脉冲电流探头(美国 Tektron ix 的 TM 6303)和 HP54810A 数字示波器获得的 放电反应器内发生放电时的电压、电流和瞬时功率曲 线。图 3 为电压/电荷利萨如图形。图 4 是根据示波器 所获得的利萨如图形由人工测量计算面积得到的放电 功率 P₀和测量系统所测量的功率 P_M,由图可见,二者 (下接第 83 页)

4 实验结果

用瞬态信号建模算法在小水池(8m × 5m × 5m)中 校准了一个低频发射器,低频发射器的瞬态响应时间 大于没有反射迭加的接收波形时间,用常规的自由场 脉冲测量方法无法在小水池中进行测量。图1为某一 低频发射器的发送电压响应曲线,小圆点代表在一开 阔水域中自由场测试得到的结果,小方块代表在小水 池中用瞬态建模算法计算得到的结果,从图中可以看 出,用两种方法获得的测量结果的一致性很好。

图 1 低频发射器的发送电压响应

5 结 论

利用瞬态建模算法来校准低频 高Q 值换能器, 可在实验室有限水域条件下大大降低校准此类换能器 的下限频率,解决了常规方法对此类换能器校准不够 精确的缺点。

参考文献

 A insleigh PL, George JD. Signal Modeling in Reverberant Environments with Application to Underwater Electroacoustic Transducer Calibration JA SA, 1995 98: 270~ 279.

 George J D, Jain V K. Estimating Steady- State Response of a Resonant Transducer in a Reverberant Underwater Environment Proc IEEE ICASSP, 1988, 2737~2739.
Dennis J E, Gay D M. An Adaptive Nonliear Least-Squares Algorithm. ACM Trans Math Softw, 1981, 7: 348~368

(上接第75页)

3 结 论

由上述分析可见, 金属工具撞击实验管道引起的 振动波形具有分形特性。同一金属工具, 即使在管道不 同位置处撞击, 它们的振动波形分维数都是相近的; 由 不同金属工具撞击的振动波形, 其分维数显著不同。这 一实验结论可用于分析管道振动的原因, 只须根据振

(上接第 79 页)

比较相差不大,表明该测量系统是适用的。测量的主要 误差来源是信号高次谐波引起的取样误差和近似计算 面积时的计算误差。

参考文献

1 B. Eliasson, U. Kogelschatz Modeling and Applications of Silent Discharge Plasma IEEE TRANS ON PLASMA 动波形分维数就可识别管道受到何种金属工具的撞击破坏。该方法运算简单,识别准确、有效。

参考文献

- 1 张济忠 分形 北京:清华大学出版社, 1995.
- B. 曼德尔布洛特 分形对象: 形, 机遇和维数 世界图书出版 社, 1999.

SC IENCE, , 1991, 19(2): 309~ 323

- U lrich Kogelschatz, et al. FROM OZONE GENERA-T DN TO FLAT TELEV IS DN SCREENS~ History and Future Potential of Dielectric - Barrier Discharges The 14th ISPC 1999: 3~ 5
- 3 陈壁光,沈能士编著.电器试验和测量技术 北京:中国电力 出版社,1999.