<%@LANGUAGE="JAVASCRIPT" CODEPAGE="936"%> 工业废气处理,等离子设备,低温等离子体,电晕处理,电晕处理机,超声波技术,驻极体

 

  
          网站首页    关于我们    产品展示     工业应用    文献资料    资料下载    技术支持    在线订购    联系我们    BBS

 

 

 

 

 

 

 

 

 

在线业务咨询

  南京苏曼电子有限公司
  地址:南京市友谊河路3号
  邮编:210007
  电话:025-86592881
  传真:025-86592891
  联系QQ:370677614
  邮箱:coronalab@163.net

  今天是

 

 

 

 

大气压下辉光放电(APGD)

   经过近20年的发展,低气压低温等离子体已取得了很大进展。但由于其运行需抽真空、设备投资大、操作复杂、不适于工业化连续生产,限制了它的广泛应用。显然,最适合于工业生产的是大气压下放电产生的等离子体。大气压下的电晕放电和介质阻挡放电目前虽然被广泛地应用于各种无机材料、金属材料和高分子材料的表面处理中,但却不能对各种化纤纺织品、毛纺织品、纤维和无纺布等材料进行表面处理。低气压下的辉光放电虽然可以处理这些材料,但存在成本、处理效率等问题,目前无法规模化应用于纺织品的表面处理。
   长期以来人们一直在努力实现大气压下的辉光放电(APGD)。1933年德国Von Engel首次报道了研究结果 ,利用冷却的裸电极在大气压氢气和空气中实现了辉光放电,但它很容易过渡到电弧,并且必须在低气压下点燃,即离不开真空系统。1988年,Kanazawa等人报道了在大气压下使用氦气获得了稳定的APGD的研究成果,并通过实验总结出了产生APGD要满足的三个条件:
(1)激励源频率需在1kHz以上;
(2)需要双介质DBD;
(3)必须使用氦气气体。
   此后,日本的Okazaki、法国的Massines和美国的Roth研究小组分别采用DBD的方法,用不同频率的电源和介质,在一些气体和气体混合物中宣称实现了大气压下“APGD”。1992年,Roth小组在5mm氦气间隙实现了APGD,并声称在几个毫米的空气间隙中也实现了APGD, 主要的实验条件为湿度低于15% 、气体流速50l/min、频率为3kHz的电源并且和负载阻抗匹配。他们认为“离子捕获”是实现APGD的关键。Roth等人用离子捕获原理解释APGD,即当所用工作电压频率高到半个周期内可在极板之间捕获正离子,又不高到使电子也被捕获时,将在气体间隙中留下空间电荷,它们影响下半个周期放电,使所需放电场强明显降低,有利于产生均匀的APGD。他们在实验室的一台气体放电等离子体实验装置中实现了Ar、He和空气的“APGD”。1993年Okazaki小组利用金属丝网(丝直径0.035mm,325目)电极为PET膜(介质)、频率为50Hz的电源,在1.5mm的气体(氩气、氮气、空气)间隙中做了大量的实验,并宣称实现了大气压辉光放电。根据电流脉冲个数及Lisajous图形(X轴为外加电压,Y轴为放电电荷量)的不同,他们提出了区分辉光放电和丝状放电的方法,即若每个外加电压半周期内仅1个电流脉冲,并且Lisajous图形为两条平行斜线,则为辉光放电。若半周期内多个电流脉冲,并且Lisajous图形为斜平行四边形,则为丝状放电。法国的Massines小组、加拿大的Radu小组和俄罗斯的Golubovskii小组对APGD的形成机理也进行了比较深入的研究工作。Massines小组对氦气和氮气的APGD进行了实验研究和数值模拟 ,除了测量外加电压和放电电流之外,他们用曝光时间仅10ns的ICCD相机拍摄了时间分辨的放电图像,用时空分辨的光谱测量记录了放电等离子体的发射光谱,并结合放电过程的一维数值模拟,他们认为,氮气中的均匀放电仍属于汤森放电,而氦气中均匀放电才是真正意义上的辉光放电,或亚辉光放电。他们还认为,得到大气压下均匀放电的关键是在较低电场下缓慢发展大量的电子雪崩。因此,在放电开始前间隙中必须存在大量的种子电子,而长寿命的亚稳态及其彭宁电离可以提供这些种子电子。根据10ns暴光的ICCD拍摄的放电图像,Radu小组发现,在大气压惰性气体He、Ne、Ar、Krypton的DBD间隙中,可以实现辉光放电。除了辉光放电和丝状放电之外,还存在介于前两者之间的第三种放电模式--柱状放电。
   从上个世纪末,国内许多单位如科罗纳实验室、清华大学、大连理工大学、华北电力大学、西安交通大学、华中科技大学、中科院物理所、河北师范大学等先后开始了对APGD的研究。由于APGD在织物、镀膜、环保、薄膜材料等技术里域有着诱人的工业化应用前景,在大气压下和空气中实现辉光放电产生低温等离子体一直是国内外学者探寻的研究重点和热点。2003年,国家自然科学基金委员会将“大气压辉光放电”列为国家重点研究项目。APGD的研究也取得了一些进展,如He、Ne、Ar、Krypton惰性气体在大气压下基本实现了APGD,空气也已经实现了用眼睛看上去比较均匀的准“APGD”。目前,对APGD的研究结果和认识是仁者见仁,智者见智。APGD的研究方兴未艾,已经受到国内外许多大学和研究机构的广泛重视。由于大气压辉光放电目前还没有一个认可标准,(只要选择一定的介质阻挡装置、频率、功率、气流、湿度等)许多实验所看到的放电现象和辉光放电很相似即出现视觉特征上呈现均匀的“雾状”放电,而看不到丝状放电,但这种放电现象是否属于辉光放电目前还没有共识和定论。


科罗纳实验室实现的APGD

 

次大气压下辉光放电(HAPGD)产生低温等离子体

   由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出现击穿和燃烧并且处理温度接近室温。次大气压辉光放电技术目前可用于低温材料、生物材料、异型材料的表面亲水处理和表面接枝、表面聚合、金属渗氮、冶金、表面催化、化学合成等工艺。由于是在次大气压条件下的辉光放电,处理环境的气氛浓度高,电子和离子的能量可达10eV以上。材料批处理的效率要高于低气压辉光放电10倍以上。 可处理金属、非金属、(碳)纤维、金属纤维、微粒、粉末等。

次大气压下辉光放电效果实例

                                                                              网站首页|关于我们|网站地图|友情链接|联系我们|留言反馈
                                                         版权所有 © 2009 coronalab 南京苏曼电子有限公司   www.coronalab.com    www.coronalab.net
                                                      地址;南京市友谊河路3号   电话;025-86592881; 025-86592871; 025-86624855; 025-86624955   传真:025-86592891
                                                                                        备案号:苏ICP备10032705号